Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(4): e14703, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572816

RESUMEN

INTRODUCTION: Painful diabetic neuropathy (PDN) is a common complication of diabetes. Previous studies have implicated that mitochondrial dysfunction plays a role in the development of PDN, but its pathogenesis and mechanism have not been fully investigated. METHODS: In this study, we used high-fat diet/low-dose streptozotocin-induced rats as a model of type 2 diabetes mellitus. Behavioral testing, whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons, and complex sensory nerve conduction velocity studies were used to assess peripheral neuropathy. Mitochondrial membrane potential (MMP), ATP, tissue reactive oxygen species, and transmission electron microscopy were used to evaluate the function and morphology of mitochondria in DRG. Real-time PCR, western blot, and immunofluorescence were performed to investigate the mechanism. RESULTS: We found that damaged mitochondria were accumulated and mitophagy was inhibited in PDN rats. The expression of sirtuin 3 (SIRT3), which is an NAD+-dependent deacetylase in mitochondria, was inhibited. Overexpression of SIRT3 in DRG neurons by intrathecally administered LV-SIRT3 lentivirus ameliorated neurological and mitochondrial dysfunctions. This was evidenced by the reversal of allodynia and nociceptor hyperexcitability, as well as the restoration of MMP and ATP levels. Overexpression of SIRT3 restored the inhibited mitophagy by activating the FoxO3a-PINK1-Parkin signaling pathway. The effects of SIRT3 overexpression, including the reversal of allodynia and nociceptor hyperexcitability, the improvement of impaired mitochondria and mitophagy, and the restoration of PINK1 and Parkin expression, were counteracted when FoxO3a siRNA was intrathecally injected. CONCLUSION: These results showed that SIRT3 overexpression ameliorates PDN via activation of FoxO3a-PINK1-Parkin-mediated mitophagy, suggesting that SIRT3 may become an encouraging therapeutic strategy for PDN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Sirtuina 3 , Animales , Ratas , Adenosina Trifosfato/farmacología , Hiperalgesia , Mitofagia , Proteínas Quinasas/metabolismo , Transducción de Señal , Sirtuina 3/genética , Sirtuina 3/metabolismo , Ubiquitina-Proteína Ligasas/genética
2.
J Pain ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38354968

RESUMEN

Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder, represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents in the basolateral amygdala (BLA)-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlights that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.

3.
J Neurosci ; 43(21): 3949-3969, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37037606

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos Motores , Animales , Masculino , Ratones , Calcio/metabolismo , Cerebelo/fisiología , Ratones Noqueados , Trastornos Motores/genética , Trastornos Motores/metabolismo , Células de Purkinje/fisiología
4.
Front Neurol ; 13: 1018362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388198

RESUMEN

Purpose: Parkinson's disease (PD) is a serious neurodegenerative disease affecting the elderly. In general, the locomotion deficit, which seriously affects the daily life of patients with PD, usually occurs at a later stage. The mask face symptom meanwhile progressively worsens. However, facial muscle disorders and changes involved in the freezing mask are unclear. Method: In this study, we recruited 35 patients with PD and 26 age- and sex-balanced controls to undergo phonation tests, while the built-in camera on the laptop recorded their facial expressions during the whole pronunciation process. Furthermore, FaceReader (version 7.0; Noldus Information Technology, Wageningen, Netherlands) was used to analyze changes in PD facial landmark movement and region movement. Results: The two-tailed Student's t-test showed that the changes in facial landmark movement among 49 landmarks were significantly lower in patients with PD than in the control group (P < 0.05). The data on facial region movement revealed that the eyes and upper lip of patients with PD differed significantly from those in the control group. Conclusion: Patients with PD had defects in facial landmark movement and regional movement when producing a single syllable, double syllable, and multiple syllables, which may be related to reduced facial expressions in patients with PD.

5.
iScience ; 25(9): 104936, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36072549

RESUMEN

Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.

6.
Cell Res ; 32(6): 570-584, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35459935

RESUMEN

The decline of nicotinamide adenine dinucleotide (NAD) occurs in a variety of human pathologies including neurodegeneration. NAD-boosting agents can provide neuroprotective benefits. Here, we report the discovery and development of a class of potent activators (NATs) of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. We obtained the crystal structure of NAMPT in complex with the NAT, which defined the allosteric action of NAT near the enzyme active site. The optimization of NAT further revealed the critical role of K189 residue in boosting NAMPT activity. NATs effectively increased intracellular levels of NAD and induced subsequent metabolic and transcriptional reprogramming. Importantly, NATs exhibited strong neuroprotective efficacy in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN) without any overt toxicity. These findings demonstrate the potential of NATs in the treatment of neurodegenerative diseases or conditions associated with NAD level decline.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/uso terapéutico
7.
Brain Behav Immun ; 100: 88-104, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808295

RESUMEN

Prolonged postsurgical pain, which is associated with multiple risk factors in the perioperative stage, is a common medical and social problem worldwide. Suitable animal models should be established to elucidate the mechanisms underlying the perioperative prolonged postsurgical pain. In this study, standard and modified social defeat stress mice models, including chronic social defeat stress (CSDS), chronic nondiscriminatory social defeat stress (CNSDS) and vicarious social defeat stress (VSDS), were applied to explore the effect of perioperative social defeat stress on postsurgical pain in male and female mice. Our results showed that exposure to preoperative CSDS could induce prolonged postsurgical pain in defeated mice regardless of susceptibility or resilience differentiated by the social interaction test. Similar prolongation of incision-induced mechanical hypersensitivity was also observed in both sexes upon exposing to CNSDS or VSDS in the preoperative period. Moreover, we found that using the modified CNSDS or VSDS models at different recovery stages after surgery could still promote abnormal pain without sex differences. Further studies revealed the key role of spinal microglial activation in the stress-induced transition from acute to prolonged postoperative pain in male but not female mice. Together, these data indicate that perioperative social defeat stress is a vital risk factor for developing prolonged postoperative pain in both sexes, but the promotion of stress-induced prolonged postoperative pain by spinal microglial activation is sexually dimorphic in mice.


Asunto(s)
Microglía , Derrota Social , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor Postoperatorio , Conducta Social , Columna Vertebral , Estrés Psicológico
8.
Front Genet ; 12: 692479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413876

RESUMEN

OBJECTIVE: Alpha-dystroglycanopathy (α-DGP) is a subtype of muscular dystrophy caused by defects in the posttranslational glycosylation of α-dystroglycan (α-DG). Our study aimed to summarize the clinical and genetic features of POMT2-related α-DGP in a cohort of patients in China. METHODS: Pedigrees, clinical data, and laboratory tests of patients diagnosed with POMT2-related α-DGP were analyzed retrospectively. The pathogenicity of variants in POMT2 were predicted by bioinformatics software. The variants with uncertain significance were verified by further analysis. RESULTS: The 11 patients, comprising eight males and three females, were from nine non-consanguineous families. They exhibited different degrees of muscle weakness, ambulation, and intellectual impairment. Among them, three had a muscle-eye-brain disease (MEB)-like phenotype, five presented congenital muscular dystrophy with intellectual disability (CMD-ID), and three presented limb-girdle muscular dystrophy (LGMD). Overall, nine novel variants of POMT2, including two non-sense, one frameshift and six missense variants, were identified. The pathogenicity of two missense variants, c.1891G > C and c.874G > C, was uncertain based on bioinformatics software prediction. In vitro minigene analysis showed that c.1891G > C affects the splicing of POMT2. Immunofluorescence staining with the IIH6C4 antibody of muscle biopsy from the patient carrying the c.874G > C variant showed an apparent lack of expression. CONCLUSION: This study summarizes the clinical and genetic characteristics of a cohort of POMT2-related α-DGP patients in China for the first time, expanding the mutational spectrum of the disease. Further study of the pathogenicity of some missense variants based on enzyme activity detection is needed.

9.
J Neurosci ; 41(34): 7278-7299, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34272314

RESUMEN

Comorbid anxiety and depressive symptoms in chronic pain are a common health problem, but the underlying mechanisms remain unclear. Previously, we have demonstrated that sensitization of the CeA neurons via decreased GABAergic inhibition contributes to anxiety-like behaviors in neuropathic pain rats. In this study, by using male Sprague Dawley rats, we reported that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain. Bilateral electrolytic lesions of CeA, but not lateral/basolateral nucleus of the amygdala (LA/BLA), abrogated both pain hypersensitivity and aversive and depressive symptoms of neuropathic rats induced by spinal nerve ligation (SNL). Moreover, SNL rats showed structural and functional neuroplasticity manifested as reduced dendritic spines on the CeA neurons and enhanced LTD at the LA/BLA-CeA synapse. Disruption of GluA2-containing AMPAR trafficking and endocytosis from synapses using synthetic peptides, either pep2-EVKI or Tat-GluA2(3Y), restored the enhanced LTD at the LA/BLA-CeA synapse, and alleviated the mechanical allodynia and comorbid aversive and depressive symptoms in neuropathic rats, indicating that the endocytosis of GluA2-containing AMPARs from synapses is probably involved in the LTD at the LA/BLA-CeA synapse and the comorbid aversive and depressive symptoms in neuropathic pain in SNL-operated rats. These data provide a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlight that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.SIGNIFICANCE STATEMENT Several studies have demonstrated the high comorbidity of negative affective disorders in patients with chronic pain. Understanding the affective aspects related to chronic pain may facilitate the development of novel therapies for more effective management. Here, we unravel that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain, and LTD at the amygdaloid LA/BLA-CeA synapse mediated by GluA2-containing AMPAR endocytosis underlies the comorbid aversive and depressive symptoms in neuropathic pain. This study provides a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlights that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.


Asunto(s)
Ansiedad/fisiopatología , Reacción de Prevención/fisiología , Complejo Nuclear Basolateral/fisiopatología , Núcleo Amigdalino Central/fisiopatología , Depresión/fisiopatología , Hiperalgesia/fisiopatología , Depresión Sináptica a Largo Plazo/fisiología , Neuralgia/fisiopatología , Receptores AMPA/fisiología , Animales , Ansiedad/etiología , Comorbilidad , Condicionamiento Clásico , Depresión/etiología , Emociones , Endocitosis , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Conducta Exploratoria , Preferencias Alimentarias , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Lentivirus/genética , Ligadura , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Neuralgia/psicología , Técnicas de Placa-Clamp , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Método Simple Ciego , Nervios Espinales/lesiones , Natación
10.
Mol Pain ; 17: 17448069211023230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34102915

RESUMEN

Cancer-associated pain is debilitating. However, the mechanism underlying cancer-induced spontaneous pain and evoked pain remains unclear. Here, using behavioral tests with immunofluorescent staining, overexpression, and knockdown of TRESK methods, we found an extensive distribution of TRESK potassium channel on both CGRP+ and IB4+ nerve fibers in the hindpaw skin, on CGRP+ nerve fibers in the tibial periosteum which lacks IB4+ fibers innervation, and on CGRP+ and IB4+ dorsal root ganglion (DRG) neurons in rats. Moreover, we found a decreased expression of TRESK in the corresponding nerve fibers within the hindpaw skin, the tibial periosteum and the DRG neurons in bone cancer rats. Overexpression of TRESK in DRG neurons attenuated both cancer-induced spontaneous pain (partly reflect skeletal pain) and evoked pain (reflect cutaneous pain) in tumor-bearing rats, in which the relief of evoked pain is time delayed than spontaneous pain. In contrast, knockdown of TRESK in DRG neurons produced both spontaneous pain and evoked pain in naïve rats. These results suggested that the differential distribution and decreased expression of TRESK in the periosteum and skin, which is attributed to the lack of IB4+ fibers innervation within the periosteum of the tibia, probably contribute to the behavioral divergence of cancer-induced spontaneous pain and evoked pain in bone cancer rats. Thus, the assessment of spontaneous pain and evoked pain should be accomplished simultaneously when evaluating the effect of some novel analgesics in animal models. Also, this study provides solid evidence for the role of peripheral TRESK in both cancer-induced spontaneous pain and evoked cutaneous pain.


Asunto(s)
Neoplasias Óseas , Canales de Potasio , Animales , Neoplasias Óseas/complicaciones , Ganglios Espinales , Dolor/complicaciones , Ratas , Ratas Sprague-Dawley
11.
Theranostics ; 11(6): 2822-2844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33456575

RESUMEN

Rationale: Idiopathic asthenozoospermia (iAZS) is one of the major causes of male infertility and has no effective therapeutic treatment. Understanding the potential mechanisms that cause it may be helpful in seeking novel targets and treatment strategies for overcoming the problem of low sperm motility in iAZS individuals. Methods: Computer-assisted semen analysis (CASA) was utilized to assess the sperm motility. RT-qPCR, Western blot, immunofluorescence staining, and calcium imaging analysis were performed to examine the expression and function of CatSper channels. Hyperactivation and acrosome reaction were used to evaluate the functional characteristics of epididymal sperm. In vivo fertility assay was applied to determine the fertility of rats. CatSper1 knockdown and overexpression experiments were performed to confirm the roles of CatSper channels in the pathogenesis of iAZS and the therapeutic effects of electroacupuncture (EA) treatment on AZS model rats. Results: Here, we reported a functional down-regulation of CatSper channel from CatSper1 to CatSper 4 in the sperm of both iAZS patients and ornidazole (ORN)-induced AZS model rats, and an impaired sperm function characterized by a reduction of protein tyrosine phosphorylation, hyperactivation, and acrosome reaction in the epididymal sperm of AZS rats. Knockdown of CatSper1 in the testis tissues is sufficient to induce AZS in normal rats, and this action was validated by the reversal effects of CatSper1 overexpression. Transcutaneous electrical acupoint stimulation (TEAS) and electroacupuncture (EA) at 2 Hz frequency improve the sperm motility via enhancing the functional expression of CatSper channels in the sperm. Gene silencing CatSper1 in the sperm abolishes the therapeutic effects of 2 Hz-EA treatment on AZS rats. Conclusions: We conclude that a functional down-regulation of CatSper channel in the sperm may be a contributor or a downstream indicator for a portion of AZS, especially iAZS, while 2 Hz-TEAS or EA treatment has a therapeutic effect on iAZS through inducing the functional up-regulation of CatSper channels in the sperm. This study provides a novel mechanism for the pathogenesis of some AZS especially iAZS, and presents a potential therapeutic target of CatSper for iAZS treatment. Acupuncture treatment like TEAS may be used as a promising complementary and alternative medicine (CAM) therapy for male infertility caused by iAZS in clinical practice.


Asunto(s)
Astenozoospermia/metabolismo , Astenozoospermia/terapia , Canales de Calcio/metabolismo , Reacción Acrosómica/fisiología , Terapia por Acupuntura/métodos , Adulto , Animales , Regulación hacia Abajo/fisiología , Humanos , Masculino , Persona de Mediana Edad , Ratas , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Adulto Joven
12.
Mol Psychiatry ; 26(6): 2363-2379, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32317715

RESUMEN

FAM19A5/TAFA5 is a member of the family with sequence similarity 19 with unknown function in emotional and cognitive regulation. Here, we reported that FAM19A5 was highly expressed in the embryonic and postnatal mouse brain, especially in the hippocampus. Behaviorally, genetic deletion of Fam19a5 resulted in increased depressive-like behaviors and impaired hippocampus-dependent spatial memory. These behavioral alterations were associated with the decreased expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-D-aspartic acid receptors, as well as significantly reduced glutamate release and neuronal activity in the hippocampus. Subsequently, these changes led to the decreased density of dendritic spines. In recent years, the roles of chronic stress participating in the development of depression have become increasingly clear, but the mechanism remains to be elucidated. We found that the levels of FAM19A5 in plasma and hippocampus of chronic stress-treated mice were significantly decreased whereas overexpression of human FAM19A5 selectively in the hippocampus could attenuate chronic stress-induced depressive-like behaviors. Taken together, our results revealed for the first time that FAM19A5 plays a key role in the regulation of depression and spatial cognition in the hippocampus. Furthermore, our study provided a new mechanism for chronic stress-induced depression, and also provided a potential biomarker for the diagnosis and a new strategy for the treatment of depression.


Asunto(s)
Depresión , Memoria Espacial , Animales , Biomarcadores , Hipocampo , Ratones , Estrés Psicológico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
13.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906633

RESUMEN

Neuropathic pain is more complex and severely affects the quality of patients' life. However, the therapeutic strategy for neuropathic pain in the clinic is still limited. Previously we have reported that electroacupuncture (EA) has an attenuating effect on neuropathic pain induced by spared nerve injury (SNI), but its potential mechanisms remain to be further elucidated. In this study, we designed to determine whether BDNF/TrκB signaling cascade in the spinal cord is involved in the inhibitory effect of 2 Hz EA on neuropathic pain in SNI rats. The paw withdrawal threshold (PWT) of rats was used to detect SNI-induced mechanical hypersensitivity. The expression of BDNF/TrκB cascade in the spinal cord was evaluated by qRT-PCR and Western blot assay. The C-fiber-evoked discharges of wide dynamic range (WDR) neurons in spinal dorsal horn were applied to indicate the noxious response of WDR neurons. The results showed that 2 Hz EA significantly down-regulated the levels of BDNF and TrκB mRNA and protein expression in the spinal cord of SNI rats, along with ameliorating mechanical hypersensitivity. In addition, intrathecal injection of 100 ng BDNF, not only inhibited the analgesic effect of 2 Hz EA on pain hypersensitivity, but also reversed the decrease of BDNF and TrκB expression induced by 2 Hz EA. Moreover, 2 Hz EA obviously reduced the increase of C-fiber-evoked discharges of dorsal horn WDR neurons by SNI, but exogenous BDNF (100 ng) effectively reversed the inhibitory effect of 2 Hz EA on SNI rats, resulting in a remarkable improvement of excitability of dorsal horn WDR neurons in SNI rats. Taken together, these data suggested that 2 Hz EA alleviates mechanical hypersensitivity by blocking the spinal BDNF/TrκB signaling pathway-mediated central sensitization in SNI rats. Therefore, targeting BDNF/TrκB cascade in the spinal cord may be a potential mechanism of EA against neuropathic pain.


Asunto(s)
Electroacupuntura/métodos , Neuralgia/terapia , Células del Asta Posterior/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Neuralgia/fisiopatología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Columna Vertebral
14.
Neurosci Bull ; 36(8): 907-918, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32394277

RESUMEN

The pain-relieving effect of acupuncture is known to involve primary afferent nerves (PANs) via their roles in signal transmission to the CNS. Using single-unit recording in rats, we characterized the generation and transmission of electrical signals in Aß and Aδ fibers induced by acupuncture-like stimuli. Acupuncture-like signals were elicited in PANs using three techniques: manual acupuncture (MAc), emulated acupuncture (EAc), and electro-acupuncture (EA)-like peripheral electrical stimulation (PES). The discharges evoked by MAc and EAc were mostly in a burst pattern with average intra-burst and inter-burst firing rates of 90 Hz and 2 Hz, respectively. The frequency of discharges in PANs was correlated with the frequency of PES. The highest discharge frequency was 246 Hz in Aß fibers and 180 Hz in Aδ fibers. Therefore, EA in a dense-disperse mode (at alternating frequency between 2 Hz and 15 Hz or between 2 Hz and 100 Hz) best mimics MAc. Frequencies of EA output >250 Hz appear to be obsolete for pain relief.


Asunto(s)
Terapia por Acupuntura , Vías Aferentes , Axones/fisiología , Estimulación Eléctrica , Animales , Ratas , Ratas Sprague-Dawley
15.
Brain Behav Immun ; 80: 777-792, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31108168

RESUMEN

The progressive increase in the prevalence of obesity in the population can result in increased healthcare costs and demands. Recent studies have revealed a positive correlation between pain and obesity, although the underlying mechanisms still remain unknown. Here, we aimed to clarify the role of microglia in altered pain behaviors induced by high-fat diet (HFD) in male mice. We found that C57BL/6CR mice on HFD exhibited enhanced spinal microglial reaction (increased cell number and up-regulated expression of p-p38 and CD16/32), increased tumor necrosis factor-α (TNF-α) mRNA and brain-derived neurotrophic factor (BDNF) protein expression as well as a polarization of spinal microglial toward a pro-inflammatory phenotype. Moreover, we found that using PLX3397 (a selective colony-stimulating factor-1 receptor (CSF1R) kinase inhibitor) to eliminate microglia in HFD-induced obesity mice, inflammation in the spinal cord was rescued, as was abnormal pain hypersensitivity. Intrathecal injection of Mac-1-saporin (a saporin-conjugated anti-mac1 antibody) resulted in a decreased number of microglia and attenuated both mechanical allodynia and thermal hyperalgesia in HFD-fed mice. These results indicate that the pro-inflammatory functions of spinal microglia have a special relevance to abnormal pain hypersensitivity in HFD-induced obesity mice. In conclusion, our data suggest that HFD induces a classical reaction of microglia, characterized by an enhanced phosphorylation of p-38 and increased CD16/32 expression, which may in part contribute to increased nociceptive responses in HFD-induced obesity mice.


Asunto(s)
Microglía/metabolismo , Obesidad/metabolismo , Dolor/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Nociceptores/metabolismo , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Exp Neurol ; 313: 109-123, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30586593

RESUMEN

Exposure to chronic stress can produce maladaptive neurobiological changes in pathways associated with pain processing, which may cause stress-induced hyperalgesia (SIH). However, the underlying mechanisms still remain largely unknown. In previous studies, we have reported that the amygdala is involved in chronic forced swim (FS) stress-induced depressive-like behaviors and the exacerbation of neuropathic pain in rats, of which, the basolateral amygdala (BLA) and the central nucleus of the amygdala (CeA) are shown to play important roles in the integration of affective and sensory information including nociception. Here, using in vivo multichannel recording from rostal anterior cingulate cortex (rACC) and BLA, we found that chronic FS stress (CFSS) could increase the pain sensitivity of rats in response to low intensity innoxious stimuli (LIS) and high intensity noxious stimuli (HNS) imposed upon the hindpaw, validating the occurrence of SIH in stressed rats. Moreover, we discovered that CFSS not only induced an increased activity of rACC neuronal population but also produced an augmented field potential power (FPP) of rACC local field potential (LFP), especially in low frequency theta band as well as in high frequency low gamma band ranges, both at the baseline state and under LIS and HNS conditions. In addition, by using a cross-correlation method and a partial directed coherence (PDC) algorithm to analyze the LFP oscillating activity in rACC and BLA, we demonstrated that CFSS could substantially promote the synchronization between rACC and BLA regions, and also enhanced the neural information flow from rACC to BLA. We conclude that exposure of chronic FS stress to rats could result in an increased activity of rACC neuronal population and promote the functional connectivity and the synchronization between rACC and BLA regions, and also enhance the pain-related neural information flow from rACC to BLA, which likely underlie the pathogenesis of SIH.


Asunto(s)
Complejo Nuclear Basolateral/fisiopatología , Giro del Cíngulo/fisiopatología , Vías Nerviosas/fisiopatología , Neuralgia/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Ritmo beta , Enfermedad Crónica , Hiperalgesia/fisiopatología , Masculino , Umbral del Dolor , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/psicología , Natación/psicología , Ritmo Teta
17.
Neural Plast ; 2018: 6109723, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534151

RESUMEN

Mechanisms underlying remifentanil- (RF-) induced hyperalgesia, a phenomenon that is generally named as opioid-induced hyperalgesia (OIH), still remain elusive. The ventral posterior lateral nucleus (VPL) of the thalamus, a key relay station for the transmission of nociceptive information to the cerebral cortex, is activated by RF infusion. Electroacupuncture (EA) is an effective method for the treatment of pain. This study aimed to explore the role of VPL in the development of OIH and the effect of EA treatment on OIH in rats. RF was administered to rats via the tail vein for OIH induction. Paw withdrawal threshold (PWT) in response to mechanical stimuli and paw withdrawal latency (PWL) to thermal stimulation were tested in rats for the assessment of mechanical allodynia and thermal hyperalgesia, respectively. Spontaneous neuronal activity and local field potential (LFP) in VPL were recorded in freely moving rats using the in vivo multichannel recording technique. EA at 2 Hz frequency (pulse width 0.6 ms, 1-3 mA) was applied to the bilateral acupoints "Zusanli" (ST.36) and "Sanyinjiao" (SP.6) in rats. The results showed that both the PWT and PWL were significantly decreased after RF infusion to rats. Meanwhile, both the spontaneous neuronal firing rate and the theta band oscillation in VPL LFP were increased on day 3 post-RF infusion, indicating that the VPL may promote the development of RF-induced hyperalgesia by regulating the pain-related cortical activity. Moreover, 2 Hz-EA reversed the RF-induced decrease both in PWT and PWL of rats and also abrogated the RF-induced augmentation of the spontaneous neuronal activity and the power spectral density (PSD) of the theta band oscillation in VPL LFP. These results suggested that 2 Hz-EA attenuates the remifentanil-induced hyperalgesia via reducing the excitability of VPL neurons and the low-frequency (theta band) oscillation in VPL LFP.


Asunto(s)
Electroacupuntura/métodos , Hiperalgesia/inducido químicamente , Hiperalgesia/terapia , Núcleos Talámicos Laterales/fisiología , Remifentanilo/toxicidad , Núcleos Talámicos Ventrales/fisiología , Analgésicos Opioides/toxicidad , Animales , Hiperalgesia/fisiopatología , Núcleos Talámicos Laterales/efectos de los fármacos , Masculino , Dolor/inducido químicamente , Dolor/fisiopatología , Manejo del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Núcleos Talámicos Ventrales/efectos de los fármacos
18.
Sci Signal ; 11(552)2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30327410

RESUMEN

Cancer-associated pain is debilitating. Understanding the mechanisms that cause it can inform drug development that may improve quality of life in patients. Here, we found that the reduced abundance of potassium channels called TRESK in dorsal root ganglion (DRG) neurons sensitized nociceptive sensory neurons and cancer-associated pain. Overexpressing TRESK in DRG neurons suppressed tumor-induced neuronal hyperexcitability and pain hypersensitivity in bone metastasis model rats, whereas knocking down TRESK increased neuronal hyperexcitability and pain hypersensitivity in normal rats. Mechanistically, tumor-associated production of vascular endothelial growth factor (VEGF) activated the receptor VEGFR2 on DRGs, which increased the abundance of the calcineurin inhibitor DSCR1, which, in turn, decreased calcineurin-mediated activation of the transcription factor NFAT, thereby reducing the transcription of the gene encoding TRESK. Intrathecal application of exogenous calcineurin to tumor-bearing rats rescued TRESK abundance and abrogated both DRG hyperexcitability and pain hypersensitivity, whereas either inhibition or knockdown of calcineurin in normal rats reduced TRESK abundance and increased DRG excitability and pain sensitivity. These findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.


Asunto(s)
Neoplasias Óseas/secundario , Calcineurina/metabolismo , Dolor en Cáncer/metabolismo , Canales de Potasio/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Conducta Animal , Neoplasias Óseas/metabolismo , Calcio/metabolismo , Dolor en Cáncer/terapia , Línea Celular Tumoral , Femenino , Ganglios Espinales/citología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Mamarias Animales/patología , Metástasis de la Neoplasia , Nociceptores/metabolismo , Péptidos/química , Potasio/química , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Neuropharmacology ; 137: 114-132, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29729892

RESUMEN

Neonatal surgical injury exacerbates spinal microglial reactivity, modifies spinal synaptic function, leading to exaggerated pain hypersensitivity after adult repeated incision. Whether and how the alteration in microglial reactivity and synaptic plasticity are functionally related remain unclear. Previously, we and others have documented that spinal brain-derived neurotrophic factor (BDNF), secreted from microglia, contributes to long-term potentiation (LTP) in adult rodents with neuropathic pain. Here, we demonstrated that the mRNA and protein expression of spinal BDNF are significantly upregulated in adult rats subjected to neonatal incision and adult repeated incision (nIN-IN). Neonatal incision facilitates spinal LTP induced by BDNF or high frequency electrical stimulation after adult incision, including a decreased induction threshold and an increased magnitude of LTP. Coincidently, inhibition of spinal BDNF abrogates the LTP facilitation, alleviates the mechanical allodynia and thermal hyperalgesia in nIN-IN rats. By contrast, spinal application of exogenous BDNF in the adult rats with a single neonatal incision mimics the LTP facilitation and pain hypersensitivity, which have been found in nIN-IN rats. Exogenous BDNF-induced exacerbation of pain hypersensitivity could be blocked by BDNF inhibitor. In addition, blockade of microglial reactivity by intrathecal application of minocycline attenuates the elevation of BDNF and the LTP facilitation, and also, alleviates pain hypersensitivity in nIN-IN rats. In conclusion, spinal BDNF, at least partly derived from microglia, contributes to the neonatal incision-induced facilitation of spinal LTP and to the exacerbation of incisional pain in adult rats. Thus, spinal BDNF may combine the changes of microglial reactivity and synaptic plasticity in nIN-IN rats.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Potenciación a Largo Plazo/fisiología , Dolor Postoperatorio/metabolismo , Médula Espinal/metabolismo , Heridas y Lesiones/complicaciones , Analgésicos no Narcóticos/farmacología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Calor , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Minociclina/farmacología , Dolor Postoperatorio/tratamiento farmacológico , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Tacto , Heridas y Lesiones/tratamiento farmacológico , Heridas y Lesiones/metabolismo
20.
Behav Brain Res ; 338: 134-142, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29080675

RESUMEN

The basolateral nucleus of the amygdala (BLA) plays a key role in processing stressful events and affective disorders. Previously we have documented that exposure of chronic forced swim (FS) to rats produces a depressive-like behavior and that sensitization of BLA neurons is involved in this process. In the present study, we demonstrated that chronic FS stress (CFSS) could activate corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the BLA, and blockade of CRF/CRFR1 signaling by intra-BLA injection of NBI27914 (NBI), a selective CRFR1 antagonist, could prevent the CFSS-induced depressive-like behaviors in rats, indicating that activation of CRF/CRFR1 signaling in the BLA is required for CFSS-induced depression. Furthermore, we discovered that exposure of chronic FS to rats could reinforce long-term potentiation (LTP) at the external capsule (EC)-BLA synapse and increase BLA neuronal excitability, and that all these alterations were inhibited by CRFR1 antagonist NBI. Moreover, we found that application of exogenous CRF also may facilitate LTP at the EC-BLA synapse and sensitize BLA neuronal excitability in normal rats via the activation of CRFR1. We conclude that activation of CRF/CRFR1 signaling in the BLA contributes to chronic FS-induced depressive-like behaviors in rats through potentiating synaptic efficiency at the EC-BLA pathway and sensitizing BLA neuronal excitability.


Asunto(s)
Complejo Nuclear Basolateral/metabolismo , Conducta Animal/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Depresión/metabolismo , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Transducción de Señal/fisiología , Compuestos de Anilina/farmacología , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/metabolismo , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...